

SIMO project

Annika Kangas & Timo Tokola 9.3.2006

Faculty of Agriculture and Forestry / Department of Forest Resource Management / SIMO

What is SIMO?

- n SIMO
 - n SIMulation and Optimization project
 - n 1.10. 2004 31.9.2007
- n General aim is to develope moduls for forest planning system as open source software
- Everything the project produces is freely dowloadable from http://honeybee.helsinki.fi/mmvar/SIMO/
- n The modules are intended for the use of
 - n researchers in forest planning
 - n forestry organizations
 - n IT companies

for developing new products and new methods

Involved parties

- n UPM-Kymmene forest
 - n Coordinator of the project forestry director Jyrki Kangas
- n Tornator oy
- n Metsämannut oy
- n Metsähallitus
- n Forestry Development Centre Tapio
- n Forestry Centres

Funding

- n Funding of the project comes
 - n almost 3/4 directly from the forestry organizations
 - n 1/4 from the funds of Helsinki University
- n The forestry organizations get 50% of their funding from TEKES

People involved

- Leader of the project has been professor Timo Tokola
- Annika Kangas will continue when Timo leaves to Joensuu
- n Researchers
 - n Jussi Rasinmäki
 - n Jouni Kalliovirta and
 - n Antti Mäkinen
- n "Senior adviser"
 - n Timo Pekkonen
- n and four graduate students

The sub-tasks of the project

1. Data model

n how the data is described in the system

2. Simulator

- n the growth and yield models
- n information of forest development

3. New generation optimization methods

- n meta-heuristics
- n linear programming (at least interface with JLP)

4. Quality control

- n quality of measured data
- n quality of data calculated with the system
 - depending on age of data etc.

Specific aims (1)

- The planning system should be
 - n Flexible with respect to the data sets it uses
 - system can utilise stand inventory data, sample plot data, remote sensing data or a combination of all these
 - n Flexible with respect to the models it uses
 - both treewise or standwise growth prediction models can be used, even for the same task
 - old models can be calibrated or adjusted to regional conditions

Specific aims (2)

- The planning system should be
 - n Adaptable to the planning problem, for instance
 - number of alternatives per stand can be defined by user
 - small number for long-term problems
 - large number for short-term problems
 - all parameters like prices, interest rate and costs can be modified by the user
 - the length of each period can be chosen freely
 - e.g. 1-year periods or 5-year periods or a combination of them

Specific aims (3)

- The planning system should be
 - n Extendable to future needs
 - new models can be introduced to the system by users (for instance for Russian or Baltic areas)
 - whole new simulation chains can be introduced by the user (when the model chains are different in different countries)
 - new variables and new data levels can be introduced by the user
 - variables concerning biomass, timber quality, etc.
 - sub-compartments

To accomplish all this...

- The program logic needs to be separated from those parts that need to be modified by users
- n Information of
 - n forest development
 - n growth and yield models
 - n forest operations etc.

should be in text files

- n The solution is based on
 - n forestry knowledge is described with XML files
 - n program itself is independent of forestry knowledge
 - n and so modifications can be done without reprogramming