

SIMO needs and idea; users' viewpoint

SIMO seminar Helsinki, 9 March 2006

Jyrki Kangas
UPM Forest Finland

Contents of the presentation

- 1. Some general aims and challenges for forest planning IT development
- 2. Needs, needs, ... and requirements
 - general, system, information basis, simulation, optimisation, calculation tasks
- 3. More needs and requirements
- 4. Still more challenges, needs and requirements

Based on SIMO co-operation, and on an article authored by Kangas, Uuttera, Wathén, Haapasalo, Laamanen, Soimasuo, Suutarla & Ärölä

Time horizon = 5 years

UPM March 13, 2006

Some general aims and challenges for forest planning IT development (Part 1)

By IT systems and their development we should

- be able to better answer today's forest planning challenges
- get solid support in different kinds of forestry decision-making tasks and processes and for different kinds of people (with different background, knowledge, skills,...)
- get forestry more efficient and profitable (better decisions with less staff, more cost-efficient forest management, etc.)
- enhance utilisation of research results in forestry practice
- increase the quality and reliability of forest management planning and forestry decision-making in Finland
- For achieving these general aims, SIMO co-operation project produces modules to be widely utilised in forest IT systems

Some general aims and challenges for forest planning IT development (Part 2)

- Forestry decisions are to be made more and more on grounds of forest databases and decision support provided by IT tools (and by a decreasing number of forestry staff)
 - => Reliability of numerical information is important, and efforts must be put on increasing the quality of forest information; more detailed and more accurate information on forest is needed and IT systems must enable storing and making full use of it
 - => Versatile and efficient analysis tools are needed to handle the wide spectrum of decision support needs

UPM March 13, 2006

Some general aims and challenges for forest planning IT development (Part 3)

- All available relevant information is worth exploiting when making decisions
 - IT systems must enable making use of all information
- Information is never (or seldom) perfect
 - IT systems should manage calculations with incomplete data

In general, forest IT system must be, e.g.,

- Reliable
- Logical
- Robust
- Tolerant (for errors)
- Many-sided
- Flexible
- Adaptable
- Easy to use
- Pedagogical, and easy to understand
- Transparent
- Technically efficient
- Expandable
- Properly documented

Needs concerning simulation of forest development and treatment schedules (Part 1)

Simulation packages should enable/provide:

- Considering large areas with different sub-area-wise parameters (ecological, economic, controlling)
- Scenarios for parameters (e.g. prices for timber assortments)
- Many-sided possibilities for adjusting models
 - e.g., with regional/local calibration, expert judgments
- Simulation with incomplete information basis (even errors), and on grounds of different information sources
- Analyses of the reliability of simulation results, and information on deficiencies of the simulation process
 - information on the applicability and deficiencies of models
- A choice of models; to choose the best for each task
 - e.g., both tree-wise and stand-level models; regional models,...

Needs concerning simulation of forest development and treatment schedules (Part 2)

- Lack of models; modelling work is still needed
 - emphasis e.g. on wood quality, energy potential, decaying wood, carbon budgets
- Tools to fill the gaps in models are needed
 - making use of expert knowledge
- Free determination of simulation periods
 - many years, one year, some months, some weeks
 - and free determination of the starting and ending moments
- Free determination of the interest rate
 - also possibility to change in time

Needs concerning simulation of forest development and treatment schedules (Part 3)

- Controlling the simulation of cuttings and management options
 - regeneration criteria
 - thinning rules, including the choice of trees to be removed
 - rules for silvicultural treatments, drainage, fertilisation, etc.
- All simulated alternative treatments must be logical
 - rules also on grounds of the treatment history
 - expert system –ideology in controlling simulation of treatment schedules
- Controlling must be easy to apply, and different controlling rules possible in different sub-areas within one simulation process

Needs concerning optimisation

- Large-scale hierarchical optimisation consisting of subareas with different parameters (control/rules, economic, ecological, calibrations,...)
- Tools to formulate and modify optimisation problems
 - easily, and in line with decision objectives and preferences
- Methods to solve different kinds of optimisation tasks
 - spatial constraints, nonlinear utility, multiple objectives
 - alternative quick-and-dirty methods; good solutions rapidly for large/difficult problems
- Robustness; optimisation must not stop because of minor deficiencies or errors
 - illustrative reporting, warnings, etc. for users

Other calculation tasks and requirements

- Biodiversity, multiple-use considerations
- Participatory planning, group decision-making
- Financial calculations; accounting, book values of biological assets
- Land-use planning; forestry in zoning
- Considering special financial values in forestry decision support and calculations
 - plots to be sold, soil resources, peat, carbon storage, emission trade, "nature protection value trade"
- Multicriteria decision analyses
- Illustrating calculation results and alternative plans

Some final remarks

- Needs and requirements is an never-ending story
- New needs and requirements evolve continuously
- We need models, methods, IT systems NOW
 - and improvements or new modules soon after a new need is met
 - SIMO helps us now when we build new systems for today's needs and for those of the near future
- In 2010, we'll have more needs
 - what needs; we are not sure
 - but IT development work will continue