

Forest operations / treatments in SIMO simulator

Antti Mäkinen 9.3.2006

Department of Forest Resource Management University of Helsinki

Simulating future scenarios

- Simulator module computes probabilistic future development of a given computational unit (ie. stand, forest area etc.)
- race a group of possible **alternative scenarios** for the given forest unit
- r From the alternative scenarios, the **best** (different criteria) alternative can be chosen by optimization

Forest treatment requirements in SIMO (from the user point-of-view)

n Feasibility

Simulated scenarios must be "reasonable"

n Controllability

Enabled control of operation parameters, eg.
thinning restraints and limits, thinning power, local calibration of the parameters, number of alternative scenarios etc...

n Transparency

 Operations and treatments implementation must be transparent to the user (not a "black-box")

Operation implementation in SIMO

- Operations implemented as models (similar to the SIMO model implementation)
 - Operation functions in C language DLL libraries
 - Operation definitions, description, metadata etc. in XML documents
 - Good documentation of the functions and the XML definitions contribute to the transparency of the operation implementation

Operation implementation in SIMO

- n Simulator processes the set of XML files, that define the current simulator
- Model chains include the information on how to eg. grow single trees and update stand attributes
- Also, model chains include the **operations**, that are evaluated in similar way to "normal" models
- Evaluating an operation model, creates a branch (a copy of the current data unit) to the data

<operation> (treatment) XML definition

- Operation model definition (pre-defined):
 - <name> (eg. "low_thinning")
 - <definition> (the metadata)
 - <data> (the input data, eg. a set of trees, diameter distribution, stand variables etc., extracted from the simulation data)
 - <variables> (variables for the operation model, extracted from the simulation data)
 - <parameters> (operation control parameters, extracted from the model chain, user-controllable)
 - <results> (the result variables of the operation)

User-control of operations

- The user can control the operation execution with modifying certain parameters in the model chains
- <long_term> (the time-span of the effect of given operation)
- <pre

User-control of operations, avoiding infeasible scenarios

The conditions for the operations can be modified, eg.

if time from last thinning > 10 years: evaluate operation

if BA > thinning limit: evaluate operation

if SP > spruce and Age > 70: No thinning

- With the use of conditions, infeasible or undesirable operations can be ruled out
- User can define the conditions for their applications, local adjustments of the conditions also possible
- n "Forced" operations also possible

Forest operations in SIMO

- Forest site and soil preparation?
- n Planting, tending
- n Harvesting:
 - Thinnings (different kinds, by species or site-class)
 - Shelterwood harvests
 - Seedwood harvests
 - Clear-cuttings

n What else?